Tag Archives: nkululeko

Perform optimization with Nkululeko

Here's one idea how to find the optimal values for 2 layers of an MLP net with nkululeko:

  • store your meta-parameters in arrays
  • loop over them and initialize an experiment each time
  • keep the experiment name but change your parameters and the plot name
  • this way you can re-use your extracted features and do not get your harddisk cluttered.

Here's some python code to illustrate this idea:

def main(config_file):
    # load one configuration per experiment
    config = configparser.ConfigParser()
    config.read(config_file)
    util = Util()
    l1s = [32, 64, 128]
    l2s = [16, 32, 64]
    for l1 in l1s:
        for l2 in l2s:
            # create a new experiment
            expr = exp.Experiment(config)

            plotname = f'{util.get_exp_name()}_{l1}_{l2}'
            util.set_config_val('PLOT', 'name', plotname)

            print(f'running {expr.name} with layers {l1} and {l2}')

            layers = {'l1':l1, 'l2':l2}
            util.set_config_val('MODEL', 'layers', layers)

            # load the data
            expr.load_datasets()

            # split into train and test
            expr.fill_train_and_tests()
            util.debug(f'train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}')

            # extract features
            expr.extract_feats()
            util.debug(f'train feats shape : {expr.feats_train.df.shape}, test feats shape:{expr.feats_test.df.shape}')

            # initialize a run manager
            expr.init_runmanager()

            # run the experiment
            expr.run()

    print('DONE')

Keep in mind though that meta parameter optimization like done here is in itself a learning problem. It is usually not feasible to systematically try out all combinations of possible values and thus some kind of stochastic aproach is preferable.

How to set up your first nkululeko project

Nkululeko is a framework build machine learning models that recognize speaker characteristics.

This post is meant to help you with setting up your first experiment, based on the Berlin Emodb.

1) Set up python

It's written in python so first you have to set up a Python environment

2) Get a database

Load the Berlin emodb database to some location on you harddrive, as discussed in this post. I will refer to the location as "emodb root" from now on.

3) Download nkululeko

Navigate with a browser to the nkululeko github page and click on the "code" button, download the zip or (better) clone with your git software (step 1).

Unpack (if zip file) to some location on your hard disk that I will call "nkululeko root" from now on.

4) Install the required python packages

Inside the virtual environment that you created!

Navigate with a shell to the nkululeko root and install the python packages needed by nkululeko with

pip install -r requirements.txt

5) Adapt the ini file

Use your favourite editor, e.g. visual studio code and open the nkululeko root. If you use visual studio code, set the path to the environment as python interpreter path and store this (nkululeko root and python envirnment path) as a workspace configuration, so next time you can simply open the wprkspace and you're set up.

Open the exp_emodb.ini file and put your nkululeko root as the root value, for me this looks like this:

root = /home/felix/data/research/nkululeko/

Put the emodb root folder as the emodb value, for me this looks like this

emodb = /home/felix/data/audb/emodb

An overview on all nkululeko options should be here

6) Run the experiment

Inside a shell type (or use VSC) and start the process with

python exp_emodb.py exp_emodb.ini

7) Inspect the results

If all goes well, the program should start by extracting opensmile features, and, if you're done, you should be able to inspect the results in the folder named like the experiment: exp_emodb.
There should be a subfolder with a confusion matrix named images` and a subfolder for the textual results named `results.

.