Use python for image generation

Here are some suggestions to visualize your results with python.
The idea is mainly to put your data in a pandas dataframe and then use pandas methods to plot it.

Bar plots

Here's an example for a barplot with two variables and three features:

vals_arou  = [3.2, 3.6]
vals_val  = [-1.2, -0.4]
vals_dom  = [2.6, 3.2]
cols = ['orig','scrambled']
plot = pd.DataFrame(columns = cols)
plot.loc['arousal'] = vals_arou
plot.loc['valence'] = vals_val
plot.loc['dominance'] = vals_dom
ax = plot.plot(kind='bar', rot=0)
ax.set_ylim(-1.8, 3.7)

Box plots

Here's a code comparing two box plots with data dots

import seaborn as sns
import pandas as pd
n = [0.375, 0.389, 0.38, 0.346, 0.373, 0.335, 0.337, 0.363, 0.338, 0.339]
e = [0.433 0.451, 0.462, 0.464, 0.455, 0.456, 0.464, 0.461 0.457, 0.456]
data = pd.DataFrame({'simple':n, 'with soft labels':e})
sns.boxplot(data = data)
sns.swarmplot(data=data, color='.25', size=1)

Confusion matrix

We can simply use the audplot package

from audplot import confusion_matrix

truth = [0, 1, 1, 1, 2, 2, 2] * 1000
prediction = [0, 1, 2, 2, 0, 0, 2] * 1000
confusion_matrix(truth, prediction)

Pie plot

Here is an example for a pie plot

import pandas as pd

label=lst:code_fig_pie]
import pandas as pd
plot_df = 
    pd.DataFrame({'cases':[461, 85, 250]}, 
    index=['unknown', 'Corona positive', 
    'Corona negative'])
plot_df.plot(kind='pie', y='cases')

looks like this:

Leave a Reply

Your email address will not be published.